
JOURNAL OF COMPUTATIONAL PHYSICS 62, 164-179 (1986 J 

Action-Variable Theory and Classical Frequencies* 

ROBERT A. LEACOCK AND PATRICK W. O'CONNOR 

Received August 16, 1984; revised January 15, 1985 

A Hamilton-Jacobiiaction-angle variable perturbation theory for the calculation of the Re- 
quency of oscillation of a classical system which undergoes periodic motion is developed and 
illustrated. The theory is based upon a contour integral definition of the action variable plus a 
particular expansion of the momentum function which is the integrand of the contour integral. 
The basic result of the theory is a series representation for the action variable which is easy to 
use and powerful. Analytic and numerical examples of the application of the action- 
variable,‘frequency formalism are given. ‘cl 1986 Academic Press, Inc. 

I. INTRODUCTION/CONCLUSIONS 

For a classical system in which periodic motion occurs the frequency of 
oscillation is a quantity of fundamental interest. Oscillatory motion occurs in, e.g., 
numerous mechanical, electromagnetic, electronic, and acoustical systems. The fre- 
quency appears also as a critical ingredient in the interaction between two systems; 
an example is the significance of the frequency in the electromagnetic radiation 
from an oscillating electric charge. For a system undergoing periodic motion a 
knowledge of the frequency of oscillation is often sufficient. Thus, techniques for the 
direct calculation of the frequency of a classical system are of interest. 

One method to obtain the frequency of a periodic system is to solve the equation 
of motion. Besides the straightforward numerical integration of the dynamical 
equation, various perturbative techniques exist for solving the dynamical equation 
for systems whose motions consist of a well-understood motion, such as simple-har- 
monic or coulombic motion, plus a “smaller” motion due to a “perturbative” term 
in the dynamical equation [l-3]. While these perturbative techniques are usually 
easy to apply in low order, they may be difficult to use in high order. More impor- 
tantly. however, is that it is conceptually and practically inefficient to obtain the 
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complete system motion just to obtain the frequency of oscillation. Thus, a direct 
method of obtaining the frequency is useful. 

As is well known, the action variable in classical Hamilton-Jacobi theory 
provides a direct means of obtaining the frequency of oscillation of a system 
undergoing periodic motion. Hamilton-Jacobi theory, which itself is a part of 
canonical transformation theory, provides a method for the complete solution of 
dynamical problems [4. 51. However: in the specific form of Hamilton-Jacobi 
theory known as the theory of action-angle variables [4-61, the action variable can 
be used to find the system frequency without recourse to the rest of the theory. 

It would appear that calculating the action variable is the obvious method for 
obtaining the frequency of a periodic classical system. However, the action variabie 
is an integral of the momentum function over one cycle of the motion, and the 
integral may not be done easily. While an action-variable integral can always be 
done numerically, such a procedure does not result in an analytic form, and, 
further, tends to obscure the physics. What is needed is a technique which allows 
ready computation of the action variable, and, in addition, permits the basic 
physics of the action variable to be seen. 

The basis for the calculation of frequencies via the action variable presented in 
this paper is a contour integral definition of the action variable combined with a 
particular expansion of the momentum function which is the integrand of the con- 
tour integral. The expansion of the momentum function is a Laurent expansion. 
which means that the action variable is just the coefficient of the first inverse power 
in the expansion [7, S]. Thus, expanding the momentum functon does the actisn- 
variable integral automatically. 

The formalism presented here we call action-variable perturbation theory 
(AVPT). For certain systems, such as the harmonic oscillator. the action variable is 
a simple analytic function of the energy. In most cases, however. the action variable 
cannot be found in closed form; in these instances the AVPT enables one to obtain 
a representation of the action variable as an expansion in powers of an appropriate 
parameter characterizing the system. Because of the series representation of the 
action variable we call the formalism a perturbation theory; however. as will be 
seen below, the formalism is more general than the usual perturbation theories. 

We are now in a position to make a series of observations and conclusions about 
the action-variable perturbation theory. First, the AVPT series representation of the 
action variable contains the expansion parameter in the coefficients as wefi as in the 
powers. The consequence of this is that the series is more powerful than the usual 
perturbation series. Second, one or several terms of the AVPT series is usually suf- 
ficient to solve accurately most problems. This means that simple closed expressions 
of the action variable and frequency are easily obtained, Third, the AVPT applies 
to all systems, not just to those systems which consist of an exactly solvable 
hamiltonian plus a perturbing potential. The theory does not require the solution of 
an unperturbed problem. Fourth, the formalism provides a theoretical framework 
in which all orders and all potentials are treated by one procedure. Being based on 
the theory of action-angle variables, however, the theory applies only to separable 
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systems. Fifth, AVPT is exceptionally fast on a computer, and gives good or high 
accuracy. Sixth, the action-variable formalism provides an alternate interpretation 
of the energy structure (dependence) of classical frequencies. The frequency is seen 
as arising from singularities of the momentum function in the complex coordinate 
plane. 

The above remarks and conclusions are illustrated in the following sections. 
Lastly, we remark that the definition of the classical action variable as a contour 
integral in the complex coordinate plane is the starting point of a theory of 
actionangle variables in quantum mechanics [IS, lo]. Also, the classical pertur- 
bation theory presented here is closely related to a corresponding quantum pertur- 
bation theory [l 11. 

II. ACTION-VARIABLE FORMALISM 

The classical action-variable perturbation theory is founded upon the action 
variable J(E) [4-61. We are interested in the frequency of a particle moving in one 
dimension .X in a potential well V(s). The particle has energy E and mass yn such 
that 2rn = 1. We define J(E) as a contour integral of the momentum function 
pb, -0 

J(E)=&xp(x, E). 

The moment-urn function is defined as 

p(x, E) = [E- v(x)y (2) 

where the square root is specified on the complex .X plane as follows. The periodic 
motion occurs between the two physical turning points x,, s2 defined by p(xl, E) = 
p(x?, E) = 0. The complex x plane on which p(x, Ej is defined is given a cut from -x1 
to x2 along the real ,Y axis. The square root in (2) is that branch of the function 
which is positive just below the cut. Returning to the action variable (1) the con- 
tour C is defined as enclosing counterclockwise the two turning points and the sec- 
tion of real .‘c axis between them. An illustration of the cut x plane and contour C is 
given in Fig. la. 

AVPT is based upon a series representation for the action variable (1). Since 
J(E) contains p(x, E), an effective series for p(.lc, E) is sought. As p(x, E) vanishes at 
the turning points x2 and x1 (= -x,), a useful standard form of p(x, E) is 

p(x, E) = [ -Ex,‘(x2 - Xf)]‘~“f(X) (3) 

wheref(x) is dimensionless and obeys ,f(O j = 1. (The discussion is restricted, for the 
moment, to potentials for which Y(0) =0 and V(X) = V( -x).) The factors in 
p(x, E) are expanded. Since the contour C used in (1) occurs in the region [X [ > .Y?. 
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FIG. 1 (a) The complex Y plane on which the momentum function p(.~. E) is defined for the anhsr- 
monk oscillator. s, and .Y? are the physical turning points. A cut (zigzag line) runs between si and 1:. 
and the contour c’ used in defining the action variable J(E) encloses X, and I: and the cut (see Eq i i 1 i. 
The unphysical turning points x3 and s4 are on the imaginary x axis. Additional cuts begin on -vi and 
x*. (b) and (c) The complex x plane for p(r, E) for the resonance well L’(s) = - L,,,‘(s2 + ~7’). p(s. Ei has 
four branch points, the turning points x1 and .Y?, and +ia. (b) For energy E near the bottom of the \+eli 
.Y: < n and -X < 1 (see text). (e) For E near the top of the well .y2 > LI and --x > 1. (ii) and (ej The com- 
plex r plane on which p(r, E, L) is defined for the three-dimensional radial system with effectike pctential 
-g:r + j.r + L’.‘r’. Contour C encloses the physical turning points r, and r2 and the cut between them. 
(d) For E near the bottom of the well r2 < -r3 and --r i 1 (see text). (ej For E significantly above the 
bottom of the well r2 > -I~ and --a > 1. 

the factor (,Y’ - .yfjl ’ IS expanded in the form .u( 1 - A$~‘.?)’ ’ = s C C( k)(x$.~’ j”, 
where k = 0, 1) 2 ,.... c(k) is the square root expansion coefficient, and ( s / > x,. .I’! X) 
is expanded in the form 

where u(O) = I. x is a dimensionless expansion parameter which occurs in the series 
for J(E) (see below). The expansion off(s) is valid in the region 1 x 1 < 1 s, 1, where 
I, is the location of the nearest singularity ofJ’(x). Using the (x1-r:)’ ’ andj’{.u’j 
expansions in the standard form (3) yields the desired expansion of p(s, E): 

Expansion (5 ) is valid in the region .Y? < / s / < 1 X, 1. Note that &II. r’) = Q for 
n+r<O or r<O. 

The perturbation series representation for J(E) follows immediately from (5) 
either by using Laurent’s theorem or by substituting (5) into (1) and using the 
residue theorem: 

.L 
J,v(E) = - c b( 1, rj !Y. (5) 

,-=0 
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Equation (6) is a series representation for J(E) to order N in the parameter CI. As 
will be seen in the illustrations, (6 j may be convergent or divergent; in either case it 
provides a powerful method for finding J(E) and the system frequency. 

Before showing ways that (6) can be used and discussing its physical content, we 
note that to use (6) it is necessary to obtain the turning point x2 and the of 
expansion coefficients tl(k). xZ and u(k) are key ingredients in (5) and thus also in 
(6). 

As the frequency v(E) of oscillation of the particle in the potential well is related 
to the action variable J(E) by l/v = 2n dJ/dE, a series representation for l/r follows 
immediately from (6): 

l.iv(E) = - i g(r) a’, 
r=O 

g(r) = 2~ 
[ 

Sb( 1, r) 
7+b(l, ,.p . 

LYdE 1 

(7) 

To obtain V(E) one can use either (6) and differentiate, or (7). In the following we 
emphasize the use of (6). 

Although it is easy to generate (6) or (7) to any order N, the lower orders are 
instructive and are frequently highly accurate. Order zero is obtained from (6j with 
N = 0 and the properties of r(k) and u(k): 

J,(E) = fvj5,y,(E). (8) 

Order zero means approximating p(x, E) by [p(x, E)]’ = -Ex;‘(.Y’ - .xf) = 
E - (E/x:) .x2. Thus, in this order, p(s, E) represents a harmonic oscillator with 
turning points x2 and x, (= -x2). That is, in lowest order, formulae (j)-(7) mean 
that the potential P’(x) has been approximated by an oscillator well (E/xi) x2 
whose turning points are the same as the exact physical turning points xi and x1. 
In this order the system frequency is I/V = 2dJ,/dE. 

Orders one (N= 1) and two (N=2) follow similarly from (6) (5), (8) and the 
properties of c(k) and u(k): 

J,(E) = JdOL-1 + 41) a/41, (9) 

J,(E) = J,(E)[l + u( 1) 1x/4 + u(2) a2i8]. (10) 

In the expansion of -f’(x) the combination u(k) ak occurs so that the separation 
between u(k) and ak is arbitrary. However, as will be seen in the illustrations, each 
system has a natural, physical choice for the definition of c(. Further, a is frequently 
small. Thus, in (9) and (lo), e.g., the u( 1 )u and @)a terms are seen as corrections 
on the zeroth order form J,(E). Lastly, as x:(E), a(E), u( 1) and u(2) are easily 
calculated, even by hand, (8))( 10) are useful expressions for obtaining J(E) and the 
system frequency. 
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As will be seen in the illustrations and as was mentioned above, series (6) for 
J(E) can be divergent. Various techniques exist for summing divergent series CL?]: 
the one we employ here is the Shanks transformation 112, 131. For order two the 
Shanks transformation estimate for J(E) is 

J,, = 
J2Jo- Jf 

Jz+J,-25,’ 

Use of (8)-( 10) in (11) gives, e.g.. 

(u(1) a)‘/4 
24(1)X-z4(2jaZ’7 ,- 

Although simple, (12) is a powerful representation of J(E). 
An overview of the calculational techniques is: For smaller a, (S)-( 10) are simple 

to use and accurate. Equation (8) by itself is frequently excellent. For larger x, (12,) 
is simple and effective. For very large a or very high accuracy. (6) is used with 
N>, 3. For N>, 3 the series (6 j can be used with or without the Shanks transfor- 
mation. 

As mentioned above in the discussion of the low order forms Jo. Ji, and J1, an 
interpretation of the basic equations (l)-(6) is that in zeroth order they represent 
the embedding of a particular oscillator in the system defined by I’(.u); the action 
variable for this special oscillator is J,(E). Corrections to order zero are provided 
then by the higher order terms in (6). This point of view can be emphasized by 
rewriting (6) as 

J,(E) = J,(E) i 6( 1, 1.) CX’ (13) 
r=O 

with 6( 1, r) = &I, r)/b(l, 0) and 6( 1, 0) = I. In the form (13) one sees the series as 
“correcting,” to order Iv in a, the embedded oscillator form J,(E). 

A second interpretation of ( 1 ))( 6) follows from an examination of the meaning of 
(5) and how it is used in (1) to produce (6j. In addition to the cut from X, to .Y: 
along the real s axis, the momentum function p(.u, E) will have in general other 
singularities (see Fig. 1). When the contour C in ( 1) is distorted to enclose the point 
at infinity it will pick up contributions from these singularities; in fact, one may say 
that these singularities determine J(E) and thus also the system frequency Y(E). The 
meaning of (5) and (6) can now be seen as follows. Because of the residue theorem, 
the only term in the double series (5) that contributes to the J(E) integral ( 1) is the 
s - ’ term. Thus, for purposes of use in (1) only, we may write p!,.~, E) as 

p(x, E) =i f b( I, r) Y’. 
r=O 

But the form (14) is just the p(s, Ej of a pure oscillator with residue i z b( I, Y) ‘2’ rn 
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the neighborhood of infinity. Thus, we see that the impact of expansion (5) is to 
sweep the effects of the singularities of y(s, E) into the point x = X) by including 
their effects in the residue of the x -’ term in p(x, E). In other words, expansion (5) 
has the effect of making a non-harmonic oscillator into a pure-harmonic oscillator 
with the correct frequency. 

The basic equations of the AVPT, (l)-(6), are founded upon the analytic proper- 
ties off(x), pizc, E), and V(x). In particular, implicit in the development of (l)-(6) 
is the assumption of an analytic form for I/(x), and the potentials used to illustrate 
(l)-(6) in the following sections are all of this type. Although it is outside the 
domain of the present discussion, one can ask if (l))(6) apply to potentials which 
are specified, e.g., numerically and so are not defined by an analytic form. For such 
a “numerical” potential one could proceed as follows. As mentioned shortly after 
(6), the key elements of (5) and thus of (6) are s1 and u(k). Given a numerical I’(x) 
one can determine a numerical .Y? andf(x) from (3), and then, having-f(s), find the 
u(k) from (4) using one of the standard numerical methods. In this way the 
program of (l)-(6) can be carried out numerically. While this numerical procedure 
is satisfactory, it does not illustrate the kind of system (1 j-(6) is designed for, and 
we do not consider it further here. 

III. ANHARMONIC? OSCILLATORS 

Our first illustration of the use of the AVPT is the anharmonic oscillator. To 
begin, we take the potential to be I+c) = (1 - 2) .y2 + 1.x” so that 2 =0 is a pure 
harmonic oscillator and /z = 1 is a pure anharmonic oscillator. The momentum 
function is p(s, E) = [E- (1 -A) s7 -LX’] “* and the system has four turning 
points -.Y,=zc~= [(/~-,?r)/Z]i*’ and -x3 =x4 = i[(p + A1 )jIA] “* where 
1, = 1 - iL and ,U = (1: + 4X)““. -xi and x1 are the physical turning points, while )c3 
and X~ are unphysical. A picture of the cut x plane for the anharmonic oscillator 
p(x, E) is shown in Fig. la; the cuts begin on the turning points. Next, using the 
standard form (3) for p(x, E) one finds of = (1 - ,Y’/.Y~)‘~‘, and, by expanding, 
,f(x) = (1 - KY~,/.Y~ j’:2 = x c(k) &(x’/xf)“, where c(k) is the square root expansion 
coefficient, k = 0, 1, Z,..., and the choice a = X:/X: arises naturally. Comparing the 
above expansion of -f(x) with the standard expansion (4) gives u(k) = c(k). The 
definitions of x2, x~, CI, and u(k) used in (5), (6) gives the solution of the anhar- 
manic oscillator. (We note that expansion (5) for the anharmonic oscillator case is 
a generalization of a series due to Boguslawski [14].) 

Before showing a numerical test of the anharmonic oscillator solution, it is useful 
to examine the validity of the expansions in (5), (6) for this case. xj and sJ are the 
first (and only) singularities of p(x, E) that one encounters outside of the contour C 
(see Fig. la). Thus, (5) is valid in -y2 < I x 1 < 1 x1 j which is a ring of inner radius x2 
and outer radius Ix4 /. Inspection of the .y2, So formulae shows that x2 < ( ?cl / so 
that the ring of validity of (5) has a finite width. For 2 = 1, x2 = 1 xq 1, and the ring 
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becomes vanishingly thin; (5) and (6) are still useful, however, as will be seen 
below. The expansion parameter a is x$‘x:. For 3. ~0. x r -IE, while as I -j 1. 
g 4 -I. Thus, as expected from the discussion of Section II. the expansion 
parameter is small for the mostly harmonic cases (I. 2 0) and large fur the mostly 
anharmonic cases (A v 1). 

The numerical results of (l)-(6) for the anharmonic oscillator are shown in 
Fig. 2a for the energy E= 1.0 and the four i values 0.001. 0.1, 0.3. and 1.0. As a 
measure of the effectiveness of (6) we define the accuracy A,, for a given order N by 

where J, is given by (6) and J, is a reference value for J. The reference value Jk is 
obtained by numerical integration and is accurate to one part in 10’ or better; we 
have not tried to exceed this level of accuracy in this paper although (6) can do bet- 
ter than this under many conditions. Turning now to Fig. 2a, we see that for 
i-=0.001 the accuracy of (6) is a part in 10” for order zero and a part in 10” for 
order one. For ,I = 0.1, zeroth order is good to one percent, while first and second 
order give good accuracy, and the accuracy improves rapidly with order N. Similar 
behavior obtains for E. = 0.3. For A = 1.0, the pure anharmonic case, the accuracy is 
10% in order zero, one percent in order one, and improves slowly with order .?v’ 
reaching one part in 10’ in order eight. 

We make three comments on the data of Fig. 2a. First, as expected on the basis 
of our earlier discussion, series (6) for J,V(E) is most effective for the nearly har- 

C’RDER N 

FOG. 2. (a) The accuracy A,y (see Eq. (15 j) of series (6) for the anharmonic oscillator with potential 
1’(x) = (1 - 1) x2+ is” as a function of the series order N. The four values i. =O.OOl, 0.1. 0 3. and 1.0 are 
shown. (b) The same as (a) except that the Shanks transformation has been applied to (6~ lsee 
Section III J. 
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manic cases (2 rr 0, c( 2: -LE) and least effective in the nearly pure anharmonic 
cases (II -Y I, CI -Y - 1). However, even in the pure anharmonic case, (6) is effective in 
low order, order one is good to l%, e.g., and the accuracy improves with order. 
Second, considered overall, the accuracy of (6) is exceptionally good. Even the low 
orders (N= 0, 1,2) provide fine accuracy. Third, Fig. 2a is for energy E = 1.0 only. 
The restriction to E = 1.0 is no loss of generality, however, since the full range of 1 
values is shown. 

AS discussed in Section II, the Shanks transformation is a powerful technique for 
obtaining information from divergent series. The transformation is useful also, 
however, on series that converge slowly. Thus, we apply the Shanks transformation 
to the series (6) for the anharmonic oscillator, and we expect the transformation to 
be most useful for the nearly pure anharmonic cases (A z 1, a c - 1 j where the 01 
values are the largest. For order two, expression (12) is used, and for higher orders 
the transformation is iterated [12]. In Fig. 2b are shown the results of applying the 
Shanks transformation to series (6) for the same energy and 1 values that were used 
in Fig. 2a; thus Figs. 2a and b can be directly compared. As expected, the transfor- 
mation does not improve the accuracy of (6) where (6) is already extremely 
accurate (smaller 1, c(), but it does significantly improve the accuracy for the larger 
1 values. Comparing the /1= 1.0 curves in Figs. L ‘a and b indicates that the Shanks 
transformation produces much higher accuracy especially for the larger orders. For 
order eight, e.g., the accuracy has been improved from one part in 10’ to one part 
in 10’. 

The anharmonic oscillator can be used to illustrate another feature of the basic 
AVPT equations (l)-(6). From (5) we note that the expansion coefficient b( 1, P), 
which is used in (6), contains -Y: and u(r). Since, in general, both 3c2 and u(r) are 
functions of c[, one has that the expansion (6) of J(E) is not a pure expansion in 
powers of a: because the b( I,4 contain K 

We illustrate the physical content of the above observation by considering the 
anharmonic oscillator with the potential Gl(x) = X’ + Ix“, which differs slightly from 
the potential considered earlier. The turning points are given by the previous for- 
mulae with the one change AL = 1. Now, consider zeroth order as given by (8). Since 
x1 contains ,? (or, equivalently, a), it is clear that zeroth order is not the pure 
oscillator case /z=O. In other words, zeroth order still contains A. In this sense, 
AVPT as given by (l)-(6) differs from traditional perturbation theories for which 
zeroth order means the pure oscillator case i = 0. The result is that zeroth order in 
AVPT is more powerful than zeroth order in traditional theories because a substan- 
tial part of the impact of the 1,~’ term is already included. This remark holds true 
for the higher order terms in (6) also, so that in any order the AVPT contains more 
of the effect of the 3L.y4 term than the traditional perturbative analyses. 

In order to illustrate numerically the effect of the ,Y dependence in the expansion 
coefficients 6( 1, r) using the anharmonic oscillator V(x) = X’ + ds”, we compare the 
“impure CI” expansion (6) of AVPT to a “pure a” expansion which we obtain as 
follows. At the start of this section it was shown that for the anharmonic oscillator 
u(T)=c(Y), so that by (5), b(1, r)=,/‘~~~c(l +r) c(r). For the anharmonic 
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ORDER N 

C 2 4 6 8 

ORDER N 

FIG. 3. (a) The accuracy rl,\ [see (15)) of series (6) for the anharmonic oscillator with potential 
r’(s) = x2 + Lx? as a function of series order A’. Four i values are shown: A = O.i, 1.0. 10. and 1OW; t!x 
Shanks transformation is used on (6) for the latter three A values. I b) The same as (a) except the “pcre 
;Y” expansion is used instead of (6) (see Section III). 

oscillator with potential x2 + Is” it can be shown that x2 = ,,‘Ev, 1 + ;I. Thus, 
hjl, r)=E,.‘;1Grc(l l tT)C(T), and using this in (6) one has 
J, = -E/G x c( 1 + r) c( r j CC, where the sum is over r = 0 to N. Expanding the 
factor .J ‘+ in powers of CX, inserting this expansion in the expression for J,. and 
collecting powers of x, yields Jzv = -C & 1, r) a”, where again the sum is over y = Q 
to N. The expression for 6( 1, r) is 6( 1, r) = E( ~- 1 j’x ( - 1 j” c(r - k) c( 1 t, k) c(k ). 
where the sum is over k = 0 to r. Since the b4( 1, r) do not contain z, we refer to the 
F( I? v) expansion of J., as the “pure CC” expansion in contrast to (6), which is called 
the “impure 3” expansion of 1, because the expansion coefficients h( 1, r j contain x 

We compare the “impure z” expansion to the “pure lx” expansion, which is more 
like traditional perturbation theories, in Fig. 3. In Fig. 3a are shown the results of 
(6j for the anharmonic oscillator for E= 1.0 and 2 = 0.1, 1.0, 10.0, and 1000. (These 
i values correspond to - CI = 0.084, 0.38, 0.73. and 0.97, respectively.) In Fig. 3b are 
shown the results of the “pure to’ expansion for the same E and ,I values. As expect- 
ed, for small i (and c() the two series perform similarly. For large J. (and x) 
however, the AVPT form (6) significantly out-performs the “pure cx” expansion: the 
comparison is particularly striking for 2 = 1000, where (6) is effective and the ‘“pure 
LX” expansion fails. The conclusion is that including x dependence in the expansion 
coefficients h( 1, r), as is done in the AVPT expansion (i;), results in a perturbation 
theory which is more effective than the usual pure-expansion-type theories. 
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IV. RESONANCE WELL 

AS a second illustration of AVPT we examine the resonance-type potentd well 
k’(x) = - C’Oa’/(~~’ + a2), where L’, and CI are positive real constants. [This well 
does not obey the condition p’(O) = 0 as was assumed in the formulae of Section 11: 
however, the formulae of II remain valid if one replaces \:(E by \,;E + L10 in (3). (5 j, 
and (8) (and elsewhere as appropriate).] Usin g the standard form (3) (with E 
replaced by E + Ibj gives f(.~) = (1 + .~‘,‘a’) ml ’ with -y7 = [-(E+ G6) a’;E]’ ?. 
Putting f(s) in the standard form (4) and expanding gives f(.v) = 
(1 - XX’,‘X:) - ’ ’ = x d(k) a(“(.\-‘/~zj~, where k = 0, 1, ?,..., ri(k) is the reciprocal 
square root expansion coefficient, and the natural choice x = -~:!a’ is made. Com- 
paring this expansion of.f’(.v) with (3) gives u(k)= d(k). The definitions of s2, X, 
and u(k) used in (5 j, (6) completes the solution of the resonance-well system. 

The resonance-well momentum function p(s, E) has four branch points: xL. .x7. 
in, and - kz. The branch points and associated cuts are shown in Figs. lb and c. 
The branch points at +ia are fixed, but the physical turning points x, and -Y? move 
with energy. For E near the bottom of the well (E= - V,j, s, and x-, are small 
relative to a (Fig. lb). For E near the top of the well (E-O), I[ and .Y? are large 
relative to a (Fig. lc). In all cases the contour C used in (1) to define J(E) encloses 
the cut from x, to .Y~. 

In the case of the anharmonic oscillator discussed in Section III, the expansion 
parameter r was restricted in magnitude to the range 0 d -X < 1. In the case of the 
resonance well, however, the magnitude of x is not restricted. From the definitions 
of .y2 and c! one has a = -.~zi:t7~ = (E+ rl)/E. Thus, --5 increases from 0 to 1 to ‘X 
as E increases from - v0 to - L’,/2 to 0. 

The size of r is correlated with the region of validity of expansion (5) for ~(s, E). 
For the resonance well the nearest singularity of p(.u, E) outside of x2 is at ia (see 
Figs. lb and c). Thus, expansion (5) is valid in a ring with inner radius ,Y? and outer 
radius a. But -a = $;!a, so when 0 < --a < 1, (5) has a finite region of validity, 
whereas when 1 < -a < X, (5) has no region of validity. In the latter range of r 
values one can ask if (5) and (6) are of any use at all. As will be seen below (5) and 
(6) remain useful even for large X. 

In Fig. 4a are shown the results of series (6) for J,,(E) for the resonance well with 
parameters v0 = 1.: a = 1. Four x values are shown: --d = 0.02, 1.0, IO., 50.: which 
correspond to energies -E = 0.980, 0.500, 0.0909, 0.0196, respectively. (The Shanks 
transformation is used on (6) when N>2 for the latter three CI values.) For 
z = -0.02 (6) is highly effective even in zeroth order. For a = - 1.0 (6) is again 
effective. For a = - 10 and -50, which are very large x values corresponding to 
energies near the top of the well. (6) remains effective if one goes to higher order. 
To achieve one percent accuracy, e.g., one needs N = 6 and 10 for u = - 10 and 
-50, respectively. In low order, (6) is not useful for extremely large a values. Thus, 
(5) and (6 j remain useful even when expansion (5) no longer has a region of 
validity in the .Y plane. In summary, the AVPT series (6) is effective in an analysis 
of the resonance well over the full range of energy. 
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FIG. 1. (a) The accuracy A,. (see (15)) of series (6) for the resonance we!1 i’(s) = - ~,,(.Y’+u’) uith 
[-,,=a= 1.0 as a function of series order >V. Four Lalues of the expansion parameter x are shoan: 
Y = -0.02. - 1.0. - 10. and -50. These u values correspond to various energies (see SectIon (5 :. 14’1 
The accuraq of series t 17) for the radial effective potential -g. r + ,.v + L’:v’ with R = 3.0. A = 0.01. and 
L = 1.0 as a function of series order >V. Four values of r are shown: r = -0.0219. - i.31. -9.11. and 
-51.9, which correspond to various energies (see Section V). 

The anharmonic oscillator and resonance potential wells considered in Section 11 
and in this section are simple algebraic functions. However, the AVPT equations of 
Section II apply equally well to other potentials such as i7.u) = - Y, exp( -.Y’ ‘a’). 
For this potential one puts p(s. E) in the standard form and expandsf*(sj as usual 
to find u(k). x2 is given by x: = --n’ ln( - E;l’,) and a natural choice for 2: is 
x = -X:/O’. Other potentials are handled similarly. 

V. SPHERICALLY Smhmrw SYSTEMS 

For a particle moving in three dimensions under a spherically symmetric poten- 
tial V(r), the Hamilton-Jacobi equation separates in spherical polar coordinates E’, 
6, 4 C&6]. The radial action variable J,, which gives the frequency of the bound- 
state radial motion, is given by definition (1) with p(.u, Ej replaced by the radial 
momentum function p(r: E, L j = [E - V(r) - L’,ir’] ‘,l. L, the angular momentum. 
is the sum of the 0 and 4 action variables: L = J,?+ J,. The contour C in t, 1) 
encloses the two physical turning points r, and r2 and the cut running between 
them; see, e.g., Figs. Id and e. When C is distorted, it picks up a contribution -t 
from the pole of p(r-, E. L) at the origin. Thus, J,. = -L + J, _ where J ( is the con- 
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tribution to J, from the other singularities ofp(r. E, L). From here on, one proceeds 
along lines similar to the one-dimensional analysis of Section II. 

As our third numerical illustration of the use of AVPT, the potential 
v(r) = -g/r + Ar is analyzed. (1 and g are positive, real constants.) The momentum 
function is p(r, E, L) = [E + g/r - 1~ - L2/r.“] ‘:2, and the system has three turning 
points rl, r2? and r3 such that 0 <I’~ < rZ and r3 ~0. (r3 is unphysical; for 
small, rj 2 E/l. j p(r, E, L) can be written in the form p(r, E, L) = 
1 \i’- dr,(l - r,/r)1,‘2 (1 - r2/rj1” (1 - r/r,)‘!‘. Expanding the three square roots 
yields 

p(r, E, Lj = i f f b(n, s) E’r-“, 
s=on= -3 

n + I 

b(n, s) = J-h, rzc(s) C c(k) c(n + s- k)(r,!r2)k, 
k=O 

(16) 

with a = rJr3. Expansion (16) is valid in the region r2 < 1 r / < -rj. Using (16) in 
(l), and remembering that Jr has the contribution -L from the pole ofp(r, E, L) at 
the origin, gives 

J,,(E, Lj= -L- f b(l,~ja” (17) 

which completes the AVPT solution of this system. (17) is the radial analog of 
series (6) for the one-dimensional J,(E). (Note that to use (17) it is necessary to 
obtain the turning points r1 , r2, and r3. j 

Since (16) and (17) are valid in the r-plane region r2 < jr 1 < -rj, we see that 
(16) and (17) are valid when r2 < -r3 and 0 < --a < 1 (see Fig. Id), and invalid 
when r2 > -r3 and 1 < --i( < CCI (see Fig. le). However, as in the case of the 
resonance well, (16) and (17) provide useful information even for 1 < -a < co as 
we see below. 

In Fig. 4b are shown the results of applying AVPT series (17 j to the radial effec- 
tive potential V(r) + L’/r’ = -g/r + Jr + L’/r*. The figure is for g=2.0, 1=0.01, 
L = 1.0, and various E values. For these g, 1, and L values the bottom of the effec- 
tive potential well is at -0.999 and the E values shown run from just above the 
bottom of the well to large, positive E. Four values of CI are shown: CI = -0.0219, 
-1.04, -9.41, and -51.9, which correspond to the energies E= -0.790, 0.00998, 
0.410, 1.11, respectively. (The Shanks transformation is used for the latter three il 
values for order N 2 2.) As usual, the theory is highly effective for small CI values 
such as a = -0.0219. For a = - 1.04, which is not small, the series (17) is still 
highly effective even in low order. For the large CI values, -9.41 and -51.9, it is 
seen in Fig. 4b that good accuracy is possible, but only in higher order. To achieve 
1% accuracy, e.g., one must go to N= 5 and 10 for N = -9.4 and -51.9, respec- 
tively. Series (17) is not useful in low order for the very large a values. These results 
parallel those found earlier for the resonance well. 
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In Fig. 4b it is seen that AVPT series (17) provides a good basis for analyzing the 
three-dimensional system with radial effective potential -g/r + 2r + L’/r’ and 
g=2.0, /I=O.Ol, and L = 1.0. However, (17) is effective also for other values of the 
potential parameters g and A. Large values of i such as 2.0 or 4.0 or larger can be 
handled. In addition, small values of g can be treated, including the case g = 0. For 
g = 0 there are still the three turning points rl, rz, and r3? and Eqs. (16) and ( 17) 
remain valid. Lastly, (16) and (17) remain intact for the case L =O: in this case 
f1 = 0 and the sum in b(n, s) reduces to its first term only. In summary, t, 17) is effec- 
tive for a wide range of g, i, and L values. 

The radial motion under potential V(r) = -g/r.+ dr was analyzed above; 
however, it is clear that related potentials can be treated similarly. For other poten- 
tials, (17) and the p(r, E, L) expansion in (16) remain valid. Different systems have. 
in general, different expressions for b(n. S) and for a. The specific forms for &!I, Lo) 
and rx depend upon the location and nature of the singularities of ,$r, E, L), which 
in turn depend upon V(r). 

VI. ADDITIONAL SPHERICALLY SYMMETRIC SYSTEMS 

In the above analysis of the radial potential V(Y) = -g/r + E.v, the term /IF can be 
viewed as perturbing the coulomb term -gjr. This perturbation occurs near I = x8, 
where Ar is significant; e.g., we saw above that r3 c E//l for small ,I so r3 is far out 
on the negative real r axis as shown in Fig. Id. For other potentials, however, a 
“perturbing” term may be significant at some other point in the r plane besides 
r= CC. An example is the potential V(r) = -g,/r + 31/r3, which can be viewed as a 
spin-orbit-type interaction A,‘r3 perturbing the coulomb term -g/r. ,l;r3 makes itself 
felt near Y = 0 so that p(r, E, L) is no longer = -iLir near r = 0. Thus, the con- 
tribution to the J, integral from the r = 0 region is no longer -L (see, e.g., ( 17) ), 
but is instead a more complicated term which reduces to -L as R goes to zero In 
the following we outline the solution for the potential El(r) = -g/r + ~./F’J this 
solution complements the earlier solution of V(r) = -g/r + Ar in Section V. 

For k’(r) = -gir + A/r’ (g, 1 are real and positive ) the momentum function is pi!. 
E, L)= [E+g!r-l/r.’ - L’jr’]“‘. The system has the usual two physical turning 
points rl and r2 with 0 < rl < r2. and, in addition, a third, unphysical? turning point 
r3 on the negative real I’ axis. For 1 small, r3 z -j-/L”. Also, r = 0 is now a branch 
point of p(r. E, L), since p(r, E, L)z [ -/l,!r3]1,2 near r =O. Thus, we let p(r, & e! 
have a cut running from r3 to r = 0 on the negative real r axis. When the contour C 
in (1) is distorted it encloses this cut producing a contribution J, to the 1, integral. 
In addition to the J, contribution which comes from the r=O region, there is a 
contribution to J, from r = ,x8 where the,egrand of (1) has a pole. This latter,!- 
tribution is easily obtained and is g/2,’ - E. Thus, J,(E, L)=J,(E, L)+gi’2,‘-E. 

Action-variable perturbation theory can be used to calculate J, as follows. p(r. E. 
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L) can be put in the form p(r, E, L)= (Er,r,jr2)1”2 (1 -~/r~)“~ (1 -r/r2)ri2 
(1 - rJr)l!‘. Expanding the last three square roots gives 

p(r, E, L) =f f f b(n, s) e&-n, 
s=On= --s 

b(rz, s)= -Jzr;c(n+.v) 2 c(k) c(s-k)(rI/rZ)k, 
k=O 

(18) 

where CI= r3/r,. Equation (18) is valid in the region -r3 < ) rj < rl, i.e., when 
- c1< 1. Now, since a piece of the contour C encloses the region near r = 0 as dis- 
cussed above, the first-order pole term of expansion (18 j produces Jo. Thus, from 
(18), 

to order N. Series (19) for the perturbation near r = 0 is the analog of series (17) for 
the perturbation near r = ~1. (19) completes the A VPT solution for the three- 
dimensional system with potential V(r)= -g,‘r+A/r3. (We do not illustrate (19) 
numerically because the results parallel the earlier illustration done with (17).) 

From the discussion of this and the previous section. it is clear that systems 
which require expansions both near I’ = 0 and r = zz are easily treated. Obvious 
examples are V(r) = -g/r + Al/r3 + &r and G’(r) = Al/r3 + ,12r. The essential point is 
that p(r, E, L) is expanded near r = 0 and r = K’, and appropriate terms in the 
expansions are used to evaluate the integral (1). 
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